Torus Knots and the Rational DAHA

Cailan Li
November 9th, 2021

1 Partl

Definition 1.1. Let L be a representation of Sy,. Define the Frobenius character map ch : Rep S, — A,
(where A, =symmetric polynomials of degree n) to be

1 o -
Ch(L) = E Z TI‘L(O')prl( )pr( )
" oeS,

where p; are power sums, k;(o) is the number of cycles of length i in o.

Remark. ch(5*) = sy. Note [S*]\-,, forms a basis for Ko(Rep S,,) and in fact

ch: Ky @Rep S, | = A(= symmetric polynomials in co many variables)
n>0

is an isomorphism of Hopf Algebras. (Representations of the Symmetric Group is a categorification of
symmetric functions.)

Lemma 1.2. The reflection(geometric) representation b of Sy is isomorphic to C"/C -z + ... + x,
where C" is the defining representation of Sy,.

Lemma 1.3. Let T : V — V be a linear operator and let V =V, ® ... Vi where each V; is T —invariant.
Then

chary(q) = Chal“T|Vi (q) ... charp), (q)

Proof. qI — T will be a block matrix. |

Proposition 1.4. For o € S, acting in the reflecting representation b
1 .
dety(I — qo) = —— [[(1 = ¢)F(@ 1
ety({ — qo) 1_q|¢|( q") (1)

Proof. 1t is easy to see that for A : V — V where V is n dimensional,
det(I — qA) = (—q)"chara(¢™") (2)
From Lemma 1.2 we have that C" = C @ b as representations and so by Lemma 1.3

detcn (I —qo)  deten (I — qo)
I — = =
dety 90) detyyiy (I — qo) 1—gqg

As the characteristic polynomial is conjugation invariant in GL(C"), and conjugating by permutation
matrices corresponds to conjugation in .S, so we see that the LHS above only depends on the cycle type
of o. For each cycle ¢ in o of length i, notice there is a ¢ invariant subspace V. of C"™ of dimension i.
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Section 1 Cailan Li Part I

For example, if o = (1234)(56), then V(j934) = @®?_1Cxy and Vise) = Cx5 @ Cxg are our two o invariant
subspaces. It is clear these only depend on the length ¢ and that if ¢ = ¢1 ... ¢, where ¢; are cycles,

Ch'=V,®...eV,,

Therefore by Lemma 1.3 we see that

detcn (I — qo) Hdet@ (I —q(12---4))k@)
where T; = (12---4) acts on C? by permutation of basis vectors. It’s clear that C! is a T—cyclic vector
space, i.e. {TJ :cl)} = C". As a result,

chary,(q) = (_1)iminTi (q)

and so deg minr, (¢) = i. Because T} — I = 0 it follows that ming; (¢) = ¢ — 1. Thus

deti (I — q(12---1)) = (—q)‘charz, (q) = ¢’ <ql — 1) =1-¢

|
Recall L, , = @(Lm /n)i where each (L, /,); is a representation of S,.
N
Proposition 1
Let Fyy/n(q;pi) = gch(Ly, /) = Zch((Lm/n) )¢'. Fixing m, we claim
1 m— oo
(¢, i) mn (@ i) 2" = ——
Z m jl;[()kl;[ll_qﬁ_szk
m/2 _ . —m/2
q q
where [m], = G
\ J
-1 -1
Proof. Let 6, = (m)2(n) Using what Sam wrote,
S (o, (L))t = o S0 B ), L= pp (=g
, 7 \om/n)t)d =4 dety(1 —qo) 4 1— g™ 1—¢

Thus

m/n q pz Z Z TI“ m/n ) ’fl( 7 pqlfr(g)q

O'ESn
n(l—m)

q 2 1 _qmi ki(o)
“ ol Z H ( 1-¢ pi)

ocESnh
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Section 2 Cailan Li Part I1

1 n(l;m)
as q_‘s’"’" 4 _4 . Thus,
IL—gm [ml]q
o0 n(1—m) ki(o)
1 q 2 1—gq
Fulap) =S = 3 (' n) = 3)
n=0 n! c€eS, [m]q 1- q
00 n(1—m) mi N\ k(D)
1 q 2 1—gq
- —n; " 4
gnznzk()\)k [m]q H(l—q’p) ? )
. i(1=m) .\ ki(A)
IO b (L”WW2Z? o)
n=0n i (1 =g

where going from (3) — (4), the cycle type of an element o € S, is the same as a partition A of n. The
number of permutations in .S, with cycle type A is precisely the size of the conjugacy class in S, so we
can then reindex over partitions of n. Going from (4) — (5) we use Z ik;(A) = n. Now note

AFn n=0\Fn 1

Hbﬂ{XZQ SN EIE
I e S M I 1]

n=0\Fn 1
Moving over to exponential generating functions it follows that

[ ()= = > ST gy (U 020

n=0Xn i
and thus
00 1_q pql(12m)zZ
Fon(q,pi) = i, & (Z a _Z oF ) (6)
=1 q
m—1 0o .. i(1—m)
1 q"pig” = 2
- e (Z Z )
7 j=0 i=1
m—1 ) ., (1—m) .
1 (@ = 2)
- e (0 ®)
7 j=0 i=1
1 m—1 oo 1
= — exp | log — (9)
[mlq J:OkEIl ( (1—q]+(12 )Z$k>>
[ |
2 Part Il

¢ Rewrite Proposition 1.
e ch(L) is really the same datum as {XL 9)}ges, - For example, the cycle type for the identity

permutation is (1"), so (p}') chL = = dim L = n! (chL, p}).
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Section 3 Cailan Li Part I1

The advantage of using ch(L) is that it’s a generating function/formal. Notice characters for S,
is a function while characters for GL(m) = is a generating function.

K, @Rep Sh Ko <Repp01y GL(m)>
n>0
- ~ for m>>0
@ Tr(diag(z1,....&m),—)
Sym
( Theorem 2 |

As a graded Sp—rep, the representation Ly, ,, decomposes as

1-m 3—m m—1
@SA(QT7Q 2 s 2 )S)\ (10)

9 \en

1

N J

Proof. Since ch is an isomorphism it suffices to show this at the level of graded Frobenius characters.
Now, using the Cauchy identity

H # = Zs)\(xl, .. .)S)\(yla- . )
A

kg LT OkYi
with L
2TT2 0<j<m
y‘:
"o i>m

we see that

n Proposition 1 , ,
gCh(Lm/n) = (2") Fin(q, pi) E (z")

Cauchy

Proposition 2.1 (Hook-Content Formula).

1-m 3-m m=1 [m+i—j]q
S)\(q 2,9 2 ,...,q9 2 ): H .
(i,j)G)\ [h/\(lv.])]q

m/2 _ ,—m/2
where [m], = ﬁ and hy(i,j) =hook length of box (i, 7).

Example.
Ly = (q+q H)SH . st
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Section 3.1 Cailan Li HOMFLY polynomial of Torus knots

3 HOMPFLY polynomial of Torus knots
Definition 3.1. Recall that the HOMFLY polynomial P = P,_,-1(a,q) of a link L is defined to be
aP(Ly) —a 'P(L-) = (¢~ ¢ ")P(Lo)
and P(unknot) = 1.
Example. For the trefoil (7(2,3)) one can compute
P(T(2,3)) = a*(¢* + ¢7% — a?)

Definition 3.2. H,(n) is the quotient of Z[qg™"]|[B,] by the relation

o7 = (¢ —1)oi+q

where {0}, <;<,_; be the usual set of generators for B,. Let g; := [0;] € Hy(n).
Warning. ¢ is always generic!

Definition 3.3. The Jones-Ocneanu trace tr : U H,(n) — Z[g™)[2] is the unique linear map s.t.
n>1

(1) tr(ab) = tr(ba).
(2) tr(1) =1.
(3) tr(zgn) = ztr(z) for x € Hy(n)

Remark (Skip). Property (1) above implies that tr factors through

U Hy(n) — | Hy(n)/[Hy(n), Hy(n)] = Sym

n>1 n>1

and some people also refer to the above map as the Jones-Oceanu trace, where you recover tr by
specializing p; to specific values.

Theorem 3.4 (Jones). Let € B,,. Define

X5(q,A) = fg; MVtr([B])],__ 1-a (11)

T~ 1-Xq

~

Then P(B)(a,q) = Xp <q2, Ci) :

Theorem 3.5 (Ocneanu). Let x € Hy(n)

() = 3 Trga (o) J[ L0920 (12)

N
AFn (4,7)EX 1—q A9

where the first row of A has coordinates (0, j) and the first column has coordinates (i,0).
Proof. Hy(n) = @End(SA(q)) is semisimple as ¢ is generic. Any function f : My (C) — C satisfying

An
f(ab) = f(ba) is a scalar multiple of Tr. Ocneanu found these constants for us. [
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Section 3.1 Cailan Li Calculation of P(T(m,n))

3.1 Calculation of P(T'(m,n))

Definition 3.6. T'(m,n) is the closure of the braid (o ...0p-1)"
Remark. T(m,n) is a knot <= (m,n) =1 and T'(m,n) = T(n,m).
Let my : Hy(n) — End(S?).

1+ ma(9s)

Lemma 3.7. Fiz A F n and define e; :=
1+gq

. Then e? = e;. Moreover let dim S*(q) = d and

rank gy € = rt. Then

(g1 gn-1)") = ¢ id g
Proof. e? = e; is simple computation in Hy(n).
Lemma 3.8. FT,, :=(01...0,-1)" is central in B,.
Because S” is irreducible it follows that
TA((g1 -+ gn—1)") = c - idga ceC
By definition, m)(g;) = qe; — (1 — €;). Because e; is an idempotent it is diagonalizable with eigenvalues
1 and 0 and therefore in some basis of S* we have size T
f -

T (g9i) = qei — (1 —e;) =

Thus
det(mr(gi)) = £¢" = det(mr((g1...9n-1)")) = qm(”_l) = = qm(”_l) = c= w(q)qrn(n_l)/d

where w : C — (4 where (g is a d—th root of unity. w is continuous, C connected, and (; is discrete and
so w is constant. Note g1...gn—1lg=1 = (I n (n—-1)...2). (n (n—1)...1)" =id and so 1 = ¢|g=1 =
w(l). [

Lemma 3.9. The matriz Ax(q) = q*r("*l)/dﬂ,\(gl ... gn—1) 18 conjugate to the matriz for the action of
(n(n—1)...1) on S*.

Proof. The previous lemma shows that Ay(q)" — I = 0. Therefore the minimal polynomial of Ay has
distinct roots and so A is diagonalizable and so the conjugacy class is just determined by the eigenvalues
and multiplicities of the eigenvalues. The same continuity and connectedness argument will show that
these are constant and thus Ay (q) is conjugate to Ax(1) =(n (n —1)...1). [ |

Corollary 3.10. Suppose (m,n) = 1.

(_1>aqmr(n—1)/d if )\ = Ha,b

(13)
0 otherwise

TI‘(?T)\((gl e gn_l)m)) = {

where Hgyp is the hook shape. [Draw hook with a + 1 vertical bozes and b+ 1 horizontal bozes].

! Aprioi r depends on i but we will show it’s independent later.
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Section 4 Cailan Li Cherednik Algebras and Torus Knots

Proof. By the previous lemma we see that

Te(mr((g1 .- gn1)™)) = ¢V 9T gr (n (n—1) ... 1)™) = g"(n=D/d Z A

where \; are the eigenvalues of (n (n—1)...1). As seen in previous lemma, all the A\; are n—th roots of
unity. As (m,n) =1 the map 7, (wy,) = w,"' where w, a primitive n—th root of unity is in Gal(Q(w,,)/Q)
and note A" = 7,()\;). As char((n (n —1)...1)) € Q[z] it follows that 7, (char, (,—1)..1)()) =

char(,, (n—1)..1)(z) and thus

z)\gn = ZTm()\i) =Tm (ZA@) = Z)\i =Troa((n (n—1)...1))

The result now follows from the Murnaghan-Nakayama rule. |
N
Theorem 3 (Jones)
Suppose (m,n) = 1. Then
gm(n—1) <1> n—1 —m(2b—n+1) ) )
P(T, = 4 —1)n-1-0 4 Joqg _ gJg—1 14
(Tnm),0) = = b;( N NIy j:anH (da—q7a™)  (14)
J#0
where (n) = ¢" — ¢ ".
N J

Proof. Plug Eq. (13) into Eq. (12) and then plug that into Eq. (11). The only thing I haven’t explicitly
computed is r = rank S>\(q)(€i) and d = dim S*. First all the o; are conjugate to oy in B, as a result of
the braid relations. So we only need to find ranke;. But e; € H,y(2). Thus

rank gx () (€1) = rank

Hg(n) 61)

ReSHq (2) (5*(q)) (

There are 2 irreducibles for H,(2) and m(91) = ¢ while 71‘5(91) = -1 = 7ler) = 1 and
WB(Ql) =0 and so for A = Hg

. Hy(n branchin a+b—-1
r = rank SHa’b(q)(el) = mult of S™(¢) in ResHZEQ))(SH“!b(q)) e < " >

and note we also have 5
d = dim S (q) L2 (a i )

a
|
4 Cherednik Algebras and Torus Knots
Proposition 4.1 (Skip). Let L be any representation of Sy, then
n—1
. — 1 T Nk 3; k
. ach(L,pz =1-ada')= kz_:o( a)” dim¢c Homg, (A%, L) (15)
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Section 4 Cailan Li Cherednik Algebras and Torus Knots

Proof. Applying definitions,

n—1 n—1 n—1
3" (~a)* dime Homs, (A"h, L) = " (—a)" <Akh,L> - l' 3 S (@) TrL(0) Trpky (o)
E—0 k=0 e o€Sy k=0

Z TI‘L ZTI‘A%

UGSn

Writing out the first few terms, we see that

ZTrAk —a)f =1+ Try(o)(—a) + ... + Tryn-1y(0)(—a)"
= (—1)""! (characteristic polynomial of o but coefficients reversed)

1\ Eq. ‘ 1 A
= (—1)"q"charg <q> Egz) det([ — qo‘) Egl) H(l _ az)ki(a)

1—a
KA

Now apply the definition of ch(L). [ |

( Theorem 4 (GORS) )

The graded Frobenius character of Ly, (after changing variables) coincides with the HOMFLY
polynomial of the (m,n)—torus knot when (m,n) = 1.

—1)(n— 1 i
alm= 1)1—7a2 gCh(Lm/n)(q27pi =(1- az) ) = P(Thm)(a,q)

N J
Proof.
1 — A
1_ a2 gCh(Lm/n)(q27pi = (1 - a2 Z Z dlm(c Homg, (Akhv (Lm/n)i)q2l
i k=0
n—1 ‘
check Z (—a ) dimc Homg,, (Sa’nflfa, (Lm/n)i)qzz
i k=0
Eq. (10)

=’ explicit function of ¢ and a

One can then show using pro g—series manipulation to show that this is equal to Eq. (14). |

Corollary 4.2 (rank-level duality).

(Lm/n)sn = (Ln/m)sm

Fun Facts:

(a) gr Lyq1/n = C[wl,...,xn,yl,...,yn]/C[:Ul,...,xn,yl,...,yn]i”

(b) cn(g,t) = (Ven, ) = @T(n,n-kl)(q’ta a=0)
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